Abstract
ABSTRACT The paper presents analysis of closed-die forging of eccentrically-located SiCp AMC cylindrical preforms at cold conditions using ‘UpperBound0 approach. The deformation has been considered in two subsequent stages, i.e. free barreling and constrained deformation stages. Second stage was again divided into two modes, i.e. unilateral and bilateral constrained deformations. For basic experimental analysis, the preforms were fabricated via liquid metal stir casting manufacturing route using LM6 Aluminium alloy and Silicon Carbide particles as reinforcements. These preforms were located eccentrically in the closed-die with respect to die axis and subsequently forged into double-hub flange components. The generalized expressions for velocity field, strain rates, various energy dissipations and average forging load were formulated for all the above deformation stage and results were compared with the experimental findings. It is expected that the present work will be useful for the analysis of the precision net-shape flashless closed-die forging operations at cold conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.