Abstract

We establish an upper bound for the cochain type level of the total space of a pull-back fibration. It explains to us why the numerical invariants for principal bundles over the sphere are less than or equal to two. Moreover computational examples of the levels of path spaces and Borel constructions, including biquotient spaces and Davis-Januszkiewicz spaces, are presented. We also show that the chain type level of the homotopy fibre of a map is greater than the E-category in the sense of Kahl, which is an algebraic approximation of the Lusternik-Schnirelmann category of the map. The inequality fits between the grade and the projective dimension of the cohomology of the homotopy fibre.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.