Abstract

The electrochemical technologies for water treatment have flourished over the last decades. However, it is still challenging to treat the actual complex water effluents by a single electrochemical process, often requiring coupling of technologies. In this study, an upgraded peroxi-coagulation (PC) process with a magnetically assembled mZVI/DSA anode has been devised for the first time. COD, NH3-N and total phosphorous were simultaneously and effectively removed from livestock wastewater. The advantages, influence of key parameters and evolution of electrogenerated species were systematically investigated to fully understand this novel PC process. The fluorescent substances in livestock wastewater could also be almost removed under optimal conditions (300mA, 0.2g ZVI particles and pH 6.8). The interaction between OH and active chlorine yielded ClO with a high steady-state concentration of 6.85×10-13M, which did not cause COD removal but accelerated the oxidation of NH3-N. The Mulliken population suggested that OH and NH3-N had similar electron-donor behavior, whereas ClO acted as an electron-withdrawing species. Besides, although the energy barrier for the reaction between OH and NH3-N (17.0kcal/mol) was lower than that with ClO (18.8kcal/mol), considering the tunneling in the H abstraction reaction, the Skodje-Truhlar method adopted for calculations evidenced a 17-fold faster NH3-N oxidation rate with ClO. In summary, this work describes an advantageous single electrochemical process for the effective treatment of a complex water matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.