Abstract

Cyclohexanone is largely generated in the direct or indirect conversion of lignin-derived bio-oils. Hence, the upgrading of cyclohexanone, i.e. deoxygenation in the presence of hydrogen is of great interest. In this regard, two nickel-molybdenum catalysts on alumina support were investigated in the temperatures up to 400 °C and pressures up to 15 bar. High activity, selectivity, and yield were achieved by utilizing these catalysts at the studied condition. The main products of the upgrading of cyclohexanone were C6, C7, and C12 cyclic, aromatic, and bicyclic including cyclohexane, cyclohexene, benzene, and cyclohexylbenzene. The results of the present study imply that these catalysts are beneficial in producing hydrocarbon-rich products from cyclohexanone and lignin-derived bio-oils. Based on the achievements of the present study, the nickel-molybdenum catalyst composed of 1.14 wt% nickel and 14.27 wt% molybdenum showed about 87%, 100%, and 116% conversion of cyclohexanone, total hydrocarbon selectivity, and total hydrocarbon yield, respectively. The optimum condition for obtaining such results was at 400 °C and 8 bar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.