Abstract
Based on the problems that target appears rotation and noise interference in complex environment, an improved multi-feature adaptive fusion tracking method is proposed. The algorithm adopts unscented Kalman particle filter (UPF) to update the measurement information in the sample particles, better overcome the problem of the particle weight degradation. In addition, in order to overcome the defects of additive and multiplicative fusion algorithm in the feature selection, the multiple adaptive fusion characteristics method that target color distribution and scale invariance feature (SIFT) are used as complementary information. Experimental results show that the proposed method is superior to the traditional methods which are based on fixed weight or standard particle filter.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have