Abstract

AbstractSensors that use ultraviolet (UV) light absorption to measure nitrate in seawater at in situ temperatures require a correction to the calibration coefficients if the calibration and sample temperatures are not identical. This is mostly due to the bromide molecule, which absorbs more UV light as temperature increases. The current correction applied to in situ ultraviolet spectrophotometer (ISUS) and submersible ultraviolet nitrate analyzer (SUNA) nitrate sensors generally follows Sakamoto et al. (2009, Limnol. Oceanogr. Methods 7, 132–143). For waters warmer than the calibration temperature, this correction model can lead to a 1–2 μmol kg−1 positive bias in nitrate concentration. Here we present an updated correction model, which reduces this small but noticeable bias by at least 50%. This improved model is based on additional laboratory data and describes the temperature correction as an exponential function of wavelength and temperature difference from the calibration temperature. It is a better fit to the experimental data than the current model and the improvement is validated using two populations of nitrate profiles from Biogeochemical Argo floats navigating through tropical waters. One population is from floats equipped with ISUS sensors while the other arises from floats with SUNA sensors on board. Although this model can be applied to both ISUS and SUNA nitrate sensors, it should not be used for OPUS UV nitrate sensors at this time. This new approach is similar to that used for OPUS sensors (Nehir et al., 2021, Front. Mar. Sci. 8, 663800) with differing model coefficients. This difference suggests that there is an instrumental component to the temperature correction or that there are slight differences in experimental methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.