Abstract

This study aims to use ultraviolet (UV) irradiation to decompose polybrominated diphenyl ethers (PBDEs) in the elutes and then reuse the surfactants. The results indicate that UV can remove 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) from surfactant eluents and Triton X series surfactants also can remove BDE-47 from the soil. Triton X-100 (TX-100) is the most promising surfactant during the washing and photodegradation processes. Quench experiments suggest that both 1O2 and OH• were involved in the TX-100 decomposition but only 1O2 is responsible for the degradation of BDE-47. In analysis of the photoproducts of BDE-47 by Gas Chromatography Mass Spectrum (GC-MS) and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), BDE-47 was mainly debrominated to the lower-brominated BDEs and then oxidized to ring-opening products. The little loss of TX-100 can mainly be attributed to the breakage of polyethylene oxide (PEO) chain. Nevertheless, the washing wastes treated by UV light can exhibit higher solubility for BDE-47 than before, indicating they can be reused for BDE-47 removal from soil. The toxicity assessment experiments were performed using Escherichia coli (E.coli) as an indicator. The results indicate that the removal of BDE-47 by UV irradiation can reduce the toxicity of eluent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call