Abstract

The pursuit of sustainable practices through the chemical recycling of polyamide wastes holds significant potential, particularly in enabling the recovery of a range of nitrogen-containing compounds. Herein, we report a novel strategy to upcycle polyamide wastes to tertiary amines with the assistance of H2 in acetic acid under mild conditions (e.g., 180 °C), which is achieved over anatase TiO2 supported Mo single atoms and Rh nanoparticles. In this protocol, the polyamide is first converted into diacetamide intermediates via acidolysis, which are subsequently hydrogenated into corresponding carboxylic acid monomers and tertiary amines in 100 % selectivity. It is verified that Mo single atoms and Rh nanoparticles work together to activate both amide bonds of the diacetamide intermediate, and synergistically catalyze its hydrodeoxygenation to form tertiary amine, but this catalyst is ineffective for hydrogenation of carboxylic acid. This work presents an effective way to reconstruct various polyamide wastes into tertiary amines and carboxylic acids, which may have promising application potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.