Abstract
Graphene oxide (GO) nanosheets, as one of the most studied graphene derivatives, have demonstrated an intrinsically strong physisorption-based gas–matter behavior, owing to its enhanced volume–surface ratio and abundant surface functional groups. The exploration of efficient and cost-effective synthesis methods for GO is an ongoing task. In this work, we explored a novel approach to upcycle inexpensive polyethylene terephthalate (PET) plastic waste into high-quality GO using a combination of chemical and thermal treatments based on a montmorillonite template. The obtained material had a nanosheet morphology with a lateral dimension of around ~2 µm and a thickness of ~3 nm. In addition, the GO nanosheets were found to be a p-type semiconductor with a bandgap of 2.41 eV and was subsequently realized as a gas sensor. As a result, the GO sensor exhibited a fully reversible sensing response towards ultra-low-concentration NO2 gas with a limit of detection of ~1.43 ppb, without the implementation of an external excitation stimulus including elevating the operating temperature or bias voltages. When given a thorough test, the sensor maintained an impressive long-term stability and repeatability with little performance degradation after 5 days of experiments. The response factor was estimated to be ~11% when exposed to 1026 ppb NO2, which is at least one order of magnitude higher than that of other commonly seen gas species including CH4, H2, and CO2.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have