Abstract

Chiral assemblies have become one of the most active research areas due to their versatility, playing an increasingly important role in bio-detection, imaging and therapy. In this work, chiral UCNPs/CuxOS@ZIF nanoprobes are prepared by encapsulating upconversion nanoparticles (UCNPs) and CuxOS nanoparticles (NPs) into zeolitic imidazolate framework-8 (ZIF-8). The novel excited-state energy distribution-modulated upconversion nanostructure (NaYbF4@NaYF4: Yb, Er) is selected as the fluorescence source and energy donor for highly efficient fluorescence resonance energy transfer (FRET). CuxOS NP is employed as chiral source and energy acceptor to quench upconversion luminescence (UCL) and provide circular dichroism (CD) signal. Utilizing the natural adsorption and sorting advantages of ZIF-8, the designed nanoprobe can isolate the influence of other common disruptors, thus achieve ultra-sensitive and highly selective UCL/CD dual-mode quantification of H2S in aqueous solution and in living cells. Notably, the nanoprobe is also capable of in vivo intra-tumoral H2S tracking. Our work highlights the multifunctional properties of chiral nanocomposites in sensing and opens a new vision and idea for the preparation and application of chiral nanomaterials in biomedical and biological analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.