Abstract
The response of the antioxidative systems of leaf cell mitochondria and peroxisomes of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa) to NaCl 100 mM stress was investigated. Salt-dependent oxidative stress was evident in Lem mitochondria as indicated by their raised levels of lipid peroxidation and H2O2 content whereas their reduced ascorbate and reduced glutathione contents decreased. Concomitantly, SOD activity decreased whereas APX and GPX activities remained at control level. In contrast, the mitochondria of salt-treated Lpa did not exhibit salt-induced oxidative stress. In their case salinity induced an increase in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione-dependent peroxidase (GPX). Lpa peroxisomes exhibited increased SOD, APX, MDHAR and catalase activity and their lipid peroxidation and H2O2 levels were not affected by the salt treatment. The activities of all these enzymes remained at control level in peroxisomes of salt-treated Lem plants. The salt-induced increase in the antioxidant enzyme activities in the Lpa plants conferred cross-tolerance towards enhanced mitochondrial and peroxisomal reactive oxygen species production imposed by salicylhydroxamic acid (SHAM) and 3-amino-1,2,4-triazole (3-AT), respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.