Abstract

We examined the roles of microtubules in gravity-induced modification of growth and development in plants by analyzing the expression levels of the α- and β-tubulin gene family and growth behavior of Arabidopsis hypocotyls treated with the microtubule-disrupting reagents colchicine, oryzalin, and propyzamide. Expression of the majority of the examined α- and β-tubulin genes was up-regulated by hypergravity at 300 g, although the extent was variable among genes, indicating that up-regulation of the expression of tubulin genes is the universal response of Arabidopsis hypocotyls to hypergravity. Hypergravity suppressed elongation growth by decreasing the cell-wall extensibility, whereas it stimulated lateral thickening of hypocotyls. By treatment with colchicine, oryzalin, and propyzamide, the elongation growth was suppressed, lateral thickening was stimulated, and the cell-wall extensibility of hypocotyls decreased dose-dependently even under 1 g conditions. The degree of hypergravity-induced changes decreased with increasing concentration of microtubule-disrupting reagents. As a result, hypergravity affected neither the length, the thickness, nor the cell-wall extensibility of hypocotyls in the presence of high concentrations of microtubule-disrupting reagents. Moreover, colchicine-treated seedlings showed helical growth even under 1 g conditions, and this phenotype was intensified under hypergravity conditions. These results suggest that the up-regulation of the expression of tubulin genes is involved in gravity-induced modification of microtubule dynamics, which may play an important role in the resistance of plant organs to the gravitational force and maintenance of normal growth phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call