Abstract

Inorganic arsenic, a ubiquitous environmental contaminant, is associated with an increased risk of cancer. There are several hypotheses regarding arsenic-induced carcinogenesis. The mechanism of action remains obscure, although hyper-proliferation of cells is involved. In the present study, the molecular mechanisms underlying the proliferation and malignant transformation of human embryo lung fibroblast (HELF) cells induced by a low concentration of arsenite were investigated. The results reveal that a low concentration of arsenite induces cell proliferation and promotes cell cycle transition from the G1 to the S phase. Moreover, arsenite activates the JNK1/c-Jun signal pathway, but not JNK2, which up-regulates the expression of cyclin D1/CDK4 and phosphorylates the retinoblastoma (Rb) protein. Blocking of the JNK1/c-Jun signal pathway suppresses the increases of cyclin D1 expression and Rb phosphorylation, which attenuates cell proliferation, reduces the transition from the G1 to the S phase, and thereby inhibits the neoplastic transformation of HELF cells induced by a low concentration of arsenite. Thus, activation of the JNK1/c-Jun pathway up-regulates the expression of cyclin D1, which is involved in the tumorigenesis caused by a low concentration of arsenite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.