Abstract

We present a novel classical algorithm designed to learn the stabilizer group-namely, the group of Pauli strings for which a state is a ±1 eigenvector-of a given matrix product state (MPS). The algorithm is based on a clever and theoretically grounded biased sampling in the Pauli (or Bell) basis. Its output is a set of independent stabilizer generators whose total number is directly associated with the stabilizer nullity, notably a well-established nonstabilizer monotone. We benchmark our method on T-doped states randomly scrambled via Clifford unitary dynamics, demonstrating very accurate estimates up to highly entangled MPS with bond dimension χ∼10^{3}. Our method, thanks to a very favorable scaling O(χ^{3}), represents the first effective approach to obtain a genuine magic monotone for MPS, enabling systematic investigations of quantum many-body physics out of equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.