Abstract

The smooth surface texture of the commercially available geogrids limits the shear strength mobilization at the interfaces. This study presents the design, manufacturing, and interface performance evaluation of innovative textured geogrids. Geogrids with square, triangular, and hexagonal apertures with and without inherent surface texture were manufactured through additive manufacturing (3D printing) technique, using PLA (Poly Lactic Acid) filament. The texture includes elevated pins of 3 mm height at the junctions and inherent diamond pattern of 1 mm height on the ribs. The individual and combined effects of surface texture and aperture shape on the stress–displacement relationship, dilation angle, and the thickness of shear zone are quantified using large-scale direct shear tests and Particle Image Velocimetry (PIV) analysis. Results showed that the textured geogrid with hexagonal aperture has exhibited the maximum interface coefficient of 0.96 with sand followed by the geogrids with triangular and square apertures. Irrespective of the aperture shape, provision of the surface texture resulted in an overall increase of interface shear strength by more than 13%. Further, PIV analysis revealed that the shear zone is 25% thicker for textured geogrids of different aperture shapes, suggesting higher interlocking and passive resistance offered by their textured surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.