Abstract
AbstractLead‐free Perovskite‐inspired materials (PIM) have become the most promising candidate for indoor photovoltaics (IPV) because of their low toxicity and high performance. In this study, the potential of one of the lead‐free PIMs, Cesium antimony chloride iodide (Cs3Sb2ClxI9‐x), is explored for IPV devices. Recent experimental research work on a Cs3Sb2ClxI9‐x− based solar cell with a power conversion efficiency (PCE) of 3.7% is considered for the baseline model development. The device performance is further optimized by investigating 1) absorber thickness and defect density, 2) band alignment of Electron Transport Layer (ETL)/Absorber, ETL Doping concentration and absorber/ETL interface defect density, 3) band alignment of Hole Transport Layer (HTL)/Absorber, HTL Doping concentration, and absorber/HTL interface defect density, 4) work function of metal contacts, 5) series and shunt resistances. After device optimization, the simulated device under 1000 lux WLED is able to achieve Jsc, Voc, FF, and PCE of 1.8 mA cm−2, 1.46 V, 89.3%, and 45.05%, respectively. Further, an evaluation of the performance of the optimized device under various indoor light sources, including White Light Emitting Diode (WLED), halogen, and Compact Fluorescent Lamp (CFL), is conducted in order to assess its performance under widely utilized lighting conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have