Abstract

The development of metal-CO2 batteries has attracted intense attention because of their unique electrochemical reaction for utilization of CO2 gas. However, unlike the alkali metal-based O2 batteries, a limited number of combinations of aprotic electrolytes have been employed for Li(Na)–CO2 batteries due to the sluggish reaction for the formation of the Li(Na)2CO3 discharge product. Here, we demonstrate an acetonitrile (MeCN)-based catholyte for use in a hybrid cell type Na-CO2 battery. The presence of a solid ceramic separator in our hybrid cell allows the stable operation of the MeCN catholyte-based Na-CO2 battery, resulting in improved electrochemical characteristics such as low overpotential, high energy density, and long cycle stability compared to the conventional TEGDME-based electrolyte. In particular, results of molecular dynamics simulations suggest that the improved performance is mainly due to the enhanced Na+ diffusion in the electrolyte. The calculated barrier for Na+ diffusion in MeCN is approximately four times lower than that in TEGDME. Thus, this work provides a promising electrolyte combination and reveals the mechanism for the improved performance of the MeCN-based electrolyte used in the hybrid cell structure, promoting the development of Na-CO2 batteries as practical secondary energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call