Abstract

Metal-CO2 batteries, especially Li-CO2 and Na-CO2 batteries, offer a novel and attractive strategy for CO2 capture as well as energy conversion and storage with high specific energy densities. However, some scientific issues and challenges existing restrict their practical applications. Here, recent progress of crucial reaction mechanisms on cathodes in Li-CO2 and Na-CO2 batteries are summarized. The detailed reaction pathways can be modified by operation conditions, electrolyte compositions, and catalysts. Besides, specific discussions from aspects of catalyst design, stability of electrolytes, and anode protection are presented. Perspectives of several innovative directions are also put forward. This review provides an intensive understanding of Li-CO2 and Na-CO2 batteries and gives a useful guideline for the practical development of metal-CO2 batteries and even metal-air batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.