Abstract

This study explored the impact of gas treatments on the structures of multi-walled carbon nanotubes supported Pd (CNT-Pd) catalysts used for electrocatalytic H2O2 reduction and the Heck cross-coupling reaction. The CNT-Pd catalyst was prepared by anchoring Pd nanoparticles on thiolated CNTs. XPS was conducted to examine the surface composition and electronic structure changes of the CNT-Pd catalyst before and after gas treatment. The XPS results revealed that as-prepared CNT-Pd contains at least two different oxidation states on the surface, whereon their proportions depend on the gas used for treatment. Treatment with H2 leads to Pd(0) enrichment near the surface, while O2 treatment causes Pd(Ⅱ) enrichment of CNT-Pd. All catalysts containing both Pd(0) and Pd(Ⅱ) were active toward H2O2 reduction, and the Heck cross-coupling reaction of n-butyl acrylate and 4-iodotoluene; increased proportion of metallic Pd(0) boosted the catalytic reaction. However, the catalyst stability increased as the amount of Pd(II) increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call