Abstract

High-energy nuclear collisions provide a unique site for the synthesis of both nuclei and antinuclei at temperatures of kT ≈ 100 − 150 MeV. In these little bangs of transient collisions, a quark-gluon plasma (QGP) of nearly vanishing viscosity is created, which is believed to have existed in the early universe within the first few microseconds after the Big Bang. Analyses of identified particles produced in these little bangs based on the statistical hadronization model for the QGP have suggested that light (anti)nuclei are produced from the QGP as other hadrons and their abundances are little affected by later hadronic dynamics. Here, we find a strong reduction of the triton yield by about a factor of 1.8 in high-energy heavy-ion collisions based on a kinetic approach that includes the effects of hadronic re-scatterings, particularly that due to pion-catalyzed multi-body reactions. This finding is supported by the latest experimental measurements and thus unveils the important role of hadronic dynamics in the little-bang nucleosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.