Abstract

The properties of ferroelectric materials, which were discovered almost a century ago1, have led to a huge range of applications, such as digital information storage2, pyroelectric energy conversion3 and neuromorphic computing4,5. Recently, it was shown that ferroelectrics can have negative capacitance6-11, which could improve the energy efficiency of conventional electronics beyond fundamental limits12-14. In Landau-Ginzburg-Devonshire theory15-17, this negative capacitance is directly related to the double-well shape of the ferroelectric polarization-energy landscape, which was thought for more than 70 years to be inaccessible to experiments18. Here we report electrical measurements of the intrinsic double-well energy landscape in a thin layer of ferroelectric Hf0.5Zr0.5O2. To achieve this, we integrated the ferroelectric into a heterostructure capacitor with a second dielectric layer to prevent immediate screening of polarization charges during switching. These results show that negative capacitance has its origin in the energy barrier in a double-well landscape. Furthermore, we demonstrate that ferroelectric negative capacitance can be fast and hysteresis-free, which is important for prospective applications19. In addition, the Hf0.5Zr0.5O2 used in this work is currently the most industry-relevant ferroelectric material, because both HfO2 and ZrO2 thin films are already used in everyday electronics20. This could lead to fast adoption of negative capacitance effects in future products with markedly improved energy efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.