Abstract
Quantum oscillation phenomenon is an essential tool to understand the electronic structure of quantum matter. Here we report a systematic study of quantum oscillations in the electronic specific heat Cel in natural graphite. We show that the crossing of a single spin Landau level and the Fermi energy give rise to a double-peak structure, in striking contrast to the single peak expected from Lifshitz-Kosevich theory. Intriguingly, the double-peak structure is predicted by the kernel term for Cel/T in the free electron theory. The Cel/T represents a spectroscopic tuning fork of width 4.8kBT which can be tuned at will to resonance. Using a coincidence method, the double-peak structure can be used to accurately determine the Landé g-factors of quantum materials. More generally, the tuning fork can be used to reveal any peak in fermionic density of states tuned by magnetic field, such as Lifshitz transition in heavy-fermion compounds.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have