Abstract

By using scanning tunneling microscopy (STM)/spectroscopy (STS), we systematically characterize the electronic structure of lightly doped 1T-TiSe2, and demonstrate the existence of the electronic inhomogeneity and the pseudogap state. It is found that the intercalation induced lattice distortion impacts the local band structure and reduce the size of the charge density wave (CDW) gap with the persisted 2 × 2 spatial modulation. On the other hand, the delocalized doping electrons promote the formation of pseudogap. Domination by either of the two effects results in the separation of two characteristic regions in real space, exhibiting rather different electronic structures. Further doping electrons to the surface confirms that the pseudogap may be the precursor for the superconducting gap. This study suggests that the competition of local lattice distortion and the delocalized doping effect contribute to the complicated relationship between charge density wave and superconductivity for intercalated 1T-TiSe2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.