Abstract

Hybrid organic–inorganic halometallates, with different organic and inorganic components, can provide a wide array of tunable physical properties. While many optoelectronic phenomena are being explored, research on the mechanical properties of this class of materials, especially fracture toughness, is lacking, resulting in conclusions on material flexibility being drawn from their elastic modulus and hardness alone with an implicit assumption that these properties correlate with material flexibility. In this Letter, we report nanoindentation results on the elastic modulus, hardness, and fracture toughness of single crystal samples of hybrid organic–inorganic histammonium chlorozincate, HistZnCl4 along the [001] axis. We find that the elastic modulus is 12.078 ± 1.034 GPa, and the hardness is 0.611 ± 0.089 GPa. Moreover, the fracture toughness of this sample is measured to be 0.098 MPa m12. Although these materials have a hardness to modulus ratio similar to that of metals, they fracture like brittle materials, demonstrating the importance of conducting studies on a material fracture toughness before determining their applicability in flexible device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.