Abstract
Plant growth promoting microorganisms have various implications for plant growth and drought stress alleviation; however, the roles of archaea have not been explored in detail. Herein, present study was aimed for elucidating potential of haloarchaea (Halolamina pelagica CDK2) on plant growth under drought stress. Results showed that haloarchaea inoculated wheat plants exhibited significant improvement in total chlorophyll (100%) and relative water content (30.66%) compared to the uninoculated water-stressed control (30% FC). The total root length (2.20-fold), projected area (1.60-fold), surface area (1.52-fold), number of root tips (3.03-fold), number of forks (2.76-fold) and number of links (1.45-fold) were significantly higher in the inoculated plants than in the uninoculated water stressed control. Additionally, the haloarchaea inoculation resulted in increased sugar (1.50-fold), protein (2.40-fold) and activity of antioxidant enzymes such as superoxide dismutase (1.93- fold), ascorbate peroxidase (1.58-fold), catalase (2.30-fold), peroxidase (1.77-fold) and glutathione reductase (4.70-fold), while reducing the accumulation of proline (46.45%), glycine betaine (35.36%), lipid peroxidation (50%), peroxide and superoxide radicals in wheat leaves under water stress. Furthermore, the inoculation of haloarchaea significantly enhanced the expression of stress-responsive genes (DHN, DREB, L15, and TaABA-8OH) and wheat vegetative growth under drought stress over the uninoculated water stressed control. These results provide novel insights into the plant-archaea interaction for plant growth and stress tolerance in wheat and pave the way for future research in this area.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have