Abstract
Motivated by the recent experiments that reported the discovery of vortex Majorana bound states (vMBSs) in iron-based superconductors, we establish a portable scheme to unveil the non-Abelian statistics of vMBSs using normal fermionic modes. The unique non-Abelian statistics of vMBSs is characterized by the charge flip signal of the fermions that can be easily read out through the charge sensing measurement. In particular, the charge flip signal will be significantly suppressed for strong hybridized vMBSs or trivial vortex modes, which efficiently identifies genuine vMBSs. To eliminate the error induced by the unnecessary dynamical evolution of the fermionic modes, we further propose a correction strategy by continually reversing the energy of the fermions, reminiscent of the quantum Zeno effect. Finally, we establish a feasible protocol to perform non-Abelian braiding operations on vMBSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.