Abstract
Alzheimer's disease (AD) is a serious threat to the global health care system and is brought on by a series of factors that cause neuronal dysfunction and impairment in memory and cognitive decline. This study investigated the therapeutic potential of phytochemicals that belong to the ten regularly used spice plants, based on their binding affinity with AD-associated proteins. Comprehensive docking studies were performed using AutoDock Vina in PyRx followed by molecular dynamic (MD) simulations using AMBER 14. The docking study of the chosen molecules revealed the binding energies of their interactions with the target proteins, while MD simulations were carried out to verify the steadiness of bound complexes. Through the Lipinski filter and admetSAR analysis, the chosen compounds' pharmacokinetic characteristics and drug likeness were also examined. The pharmacophore mapping study was also done and analyzed for best selected molecules. Additionally, principal component analysis (PCA) was used to examine how the general motion of the protein changed. The results showed quercetin and myricetin to be potential inhibitors of AChE and alpha-amyrin and beta-chlorogenin to be potential inhibitors of BuChE, exhibiting best binding energies comparable to those of donepezil, used as a positive control. The multiple descriptors from the simulation study, root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bond, radius of gyration (Rg), and solvent-accessible surface areas (SASA), confirm the stable nature of the protein-ligand complexes. Molecular mechanic Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations indicated the energetically favorable binding of the ligands to the protein. Finally, according to pharmacokinetic properties and drug likeness, characteristics showed that quercetin and myricetin for AChE and alpha-amyrin and beta-chlorogenin for BuChE were found to be the most effective agents for treating the AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.