Abstract

Computer-aided drug design is widely employed to identify novel compounds for therapeutic applications. Ketoprofen (KTP), a commonly used and marketed nonsteroidal anti-inflammatory drug (NSAID), is effective in treating pain, fever, inflammation, and some cancers. In this research, we explored the behavior of six analogues designed by structurally modifying the KTP molecule. Specifically, KTP-A and KTP-B contain a –CN group at the ortho position, KTP-C and KTP-D have a –CN group at the meta position, and KTP-E and KTP-F feature a –CF3 group at the meta position. To assess these analogues, we conducted molecular dynamics simulations (MD) to study their inhibitory effects on human cyclooxygenase 2 (COX-2), providing detailed insights into the structure and dynamics of the protein both with and without ligands. MD simulation, enhanced by technological advances, has proven to be a powerful tool for new drug discovery. We further quantified the binding affinity of these drug molecules toward COX-2 using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations. The dynamic properties were evaluated through analyses of root mean square deviations (RMSD), root mean square fluctuations (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), covariance matrix, principal component analysis (PCA), and Gibbs free energy landscapes (FEL). Ultimately, this study confirms that the six KTP derivatives are promising candidates for the treatment of inflammation, with KTP-B standing out as particularly effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.