Abstract

This article presents an algorithm for the identification of modal parameters during flutter flight testing when forced excitation is employed and the aircraft possesses several sensors for structural response acquisition. The main novelty of the method, when compared with other classical modal analysis methods, is that the analysis is carried out in intervals of time instead of in the whole duration of the excitation. It means that, even when the response signal is only partially available, some modal parameters may be still identified. Application to analytic signals as well as structural response of modern fighter aircraft using frequency-swept excitation is provided in order to demonstrate the effectiveness, robustness and noise immunity of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call