Abstract

A key issue in the control, health monitoring, and condition assessment of civil structures is the estimation of structural modal parameters based on measured structural responses. However, field measurements of structural responses from civil structures under strong wind or earthquake excitations usually exhibit non-stationary feature and therefore cannot be adequately deal with by traditional modal identification methods. In this study, a novel procedure is integrated for modal parameter identification of civil structures from non-stationary structural responses on the basis of the variational mode decomposition (VMD) technique. First, the VMD algorithm is applied to decompose measured vibration signals into individual mode components. Then, the random decrement technique (RDT) is employed to obtain free vibration response of each mono component. Next, normalized Hilbert transform (NHT) is used to estimate modal natural frequency and damping ratio. The performance of the developed approach is evaluated using simulated non-stationary responses of a frame structure, and the identified results are validated. The effects of crucial factors such as levels of noise involved in structural response and data length on the modal parameter estimations are examined through detailed parametric study. Furthermore, the approach is applied to modal identification based on field measured non-stationary responses of a high-rise building during Typhoon Nida. The case study illustrates that the integrated method is an efficient tool for estimating the modal parameters of civil structures from non-stationary structural responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.