Abstract

Heterogeneity is commonly believed to be intrinsic to metallic glasses (MGs). Nevertheless, how to distinguish and characterize the heterogeneity at the atomic level is still debated. Based on the extensive molecular dynamics simulations that combine isoconfigurational ensemble and atomic pinning methods, we directly reveal that MG contains flow units and the elastic matrix which can be well distinguished by their distinctive atomic-level responsiveness and mechanical performance. The microscopic features of the flow units, such as the shape, spatial distribution dimensionality, and correlation length, are characterized from atomic position analyses. Furthermore, the correlation between the flow units and the landscape of energy state, free volume, atomic-level stress, and especially the local bond orientational order parameter is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.