Abstract

Cognitive functioning is a crucial aspect in schizophrenia (SZ), and when altered it has devastating effects on patients' quality of life and treatment outcomes. Several studies suggested that they could result from altered communication between the cortex and cerebellum. However, the neural correlates underlying these impairments have not been identified. In this study, we investigated resting state functional connectivity (rsFC) in SZ patients, by considering the interactions between cortical networks supporting cognition and cerebellum. In addition, we investigated the relationship between SZ patients' rsFC and their symptoms.We used fMRI data from 74 SZ patients and 74 matched healthy controls (HC) downloaded from the publicly available database SchizConnect. We implemented a seed-based connectivity approach to identify altered functional connections between specific cortical networks and cerebellum. We considered ten commonly studied resting state networks, whose functioning encompasses specific cognitive functions, and the cerebellum, whose involvement in supporting cognition has been recently identified. We then explored the relationship between altered rsFC values and Positive and Negative Syndrome Scale (PANSS) scores.The SZ group showed increased connectivity values compared with HC group for cortical networks involved in attentive processes, which were also linked to PANSS items describing attention and language-related processing. We also showed decreased connectivity between cerebellar regions, and increased connectivity between them and attentive networks, suggesting the contribution of cerebellum to attentive and affective deficits.In conclusion, our findings highlighted the link between negative symptoms in SZ and altered connectivity within the cerebellum and between the same and cortical networks supporting cognition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call