Abstract
Cells can swell or shrink in certain solutions; however, no equivalent activity has been observed in inorganic materials. Although lamellar materials exhibit increased volume with increase in the lamellar period, the interlamellar expansion is usually limited to a few nanometres, with a simultaneous partial or complete exfoliation into individual atomic layers. Here we demonstrate a large monolithic crystalline swelling of layered materials. The gallery spacing can be instantly increased ~100-fold in one direction to ~90 nm, with the neighbouring layers separated primarily by H2O. The layers remain strongly held without peeling or translational shifts, maintaining a nearly perfect three-dimensional lattice structure of >3,000 layers. First-principle calculations yield a long-range directional structuring of the H2O molecules that may help to stabilize the highly swollen structure. The crystals can also instantaneously shrink back to their original sizes. These findings provide a benchmark for understanding the exfoliating layered materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.