Abstract

An unusually sharp localized surface plasmon resonance (sLSPR) is observed for a monolayer of glass-supported silver nanocubes coated with a thin, 5-20 nm, Al2O3 film. The resonance becomes significantly narrower and stronger while losing optical anisotropy and sensitivity to the surroundings with increasing overlayer thickness. Surface-enhanced Raman scattering excitation profiles indicate an additional enhancement to the electric field brought in by the sLSPR. The resonance is thought to originate from a Fano-like constructive interference between the quadrupolar and dipolar LSPR modes in supported silver nanocubes leading to enhanced light extinction. This phenomenon is of significance for plasmon-induced charge-transfer processes in photovoltaics and catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.