Abstract

In this work, a machine learning mapping approach for predicting the properties of atomistic systems is reported. Within this approach, the atomic orbital overlap, density, or Kohn-Sham (KS) Fock matrix elements obtained at a low level of theory such as extended tight-binding have been used as input features to predict the electric field gradient (EFG) tensors at a higher level of theory such as those obtained with hybrid functionals. It is shown that the machine-learning-predicted EFG tensors can be used to compute spin relaxation rates of several ions in aqueous solutions. From only a fraction of data used in direct calculation, one can predict the quadrupolar isotropic spin relaxation rates with good accuracy, achieving relative errors between about 2-8% for different ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.