Abstract

First-principles calculations show that a carbon adatom defect at the Def[5, 6] site on the surface of C60 can produce a more stable spin-polarized singlet electronic state instead of a magnetic triplet state. This is clearly different from the cases of graphene and nanotubes. The mechanism results from the electron population of the adatom, which produces antiferromagnetic coupling around the C60 cage and the adatom itself. Our calculations show the same phenomenon occurs in other IPR fullerenes, such as C70 and C80. These findings extend the understanding of the magnetic origin of pure carbon structures and are valuable for research related to the spin polarization of carbon systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.