Abstract

The coupling between spin, valley and layer degrees of freedom in transition-metal dichalcogenides is shown to give rise to spin-polarized electron states, providing opportunities to create and manipulate spin and valley polarizations in bulk solids. Methods to generate spin-polarized electronic states in non-magnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices1. This is generally accepted to require breaking global structural inversion symmetry1,2,3,4,5. In contrast, here we report the observation from spin- and angle-resolved photoemission spectroscopy of spin-polarized bulk states in the centrosymmetric transition-metal dichalcogenide WSe2. Mediated by a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localized6, we show how spin splittings up to ∼0.5 eV result, with a spin texture that is strongly modulated in both real and momentum space. Through this, our study provides direct experimental evidence for a putative locking of the spin with the layer and valley pseudospins in transition-metal dichalcogenides7,8, of key importance for using these compounds in proposed valleytronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.