Abstract

The influence of molecular weight of poly (methyl methacrylate) (PMMA) on the thermodynamics and dynamics of phase separation in PMMA/poly (styrene-co-acrylonitrile) (SAN) blends was investigated via optical microscopy, time-resolved small-angle light scattering (SALS), and dynamic rheological measurements. It was found that the cloud point temperature of the blends decreased with an increase in the molecular weight of the PMMA. The phase separation rates of PMMA 48K/SAN and PMMA 85K/SAN blends with the near-critical composition were almost the same at small quench depths due to the limited mobility of molecular chains at low temperatures. However, an unexpected phase separation dynamics was observed at larger quench depths. Not only the morphology evolution but also the apparent diffusion coefficient Dapp calculated from SALS revealed that the phase separation rate was faster in the PMMA 85K/SAN blend than in the PMMA 48K/SAN blend. The possible reasons for this unusual rapid kinetics of phase separation observed in the higher molecular weight blend were discussed in terms of molecular mobility and viscoelasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.