Abstract

With the development of methods to support metallocenes and methylaluminoxane cocatalysts on suitable carriers, it became possible to combine the specific advantages of homogeneous metallocene catalysis with those of heterogeneous Ziegler catalysts in olefin polymerization. By means of ethylene polymerization it could be shown that the method of supporting methylaluminoxane and metallocene on porous silica has a substantial influence on the progress of polymerization. In particular, fragmentation of catalyst particles during polymerization can be circumvented, maintaining the catalyst activity, if active catalyst sites are being generated on the particle surface only. A method of preparation for such newly designed supported metallocene catalysts is presented, where the active catalyst sites are located exclusively on the particle surface. Furthermore, the kinetics of ethylene polymerization and morphology properties prior to and after polymerization are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call