Abstract

Since the pioneering by Karl Ziegler and Giulio Natta in the early 1950's on the polymerization of simple olefins, there has been intense interest in the application of early transition metal catalysts for the selective polymerization of inexpensive olefins. Following to Ziegler-Natta catalysts [1], metallocene catalysts were discovered in the late 1980's and resulted in numerous industrial processes for improving the properties of polyolefinic materials along with performance parameters. This field has been remarkably renewed with the use of catalysts based on early transition metals metallocene [2]. Development of new catalysts with transition metals has played a substantial role in the fast-growing polyolefins industry. Improvement of new, better performing, less costly polyolefins has often been a result of catalyst development. However, polymerization processes of olefins, beside the requirement of higher activity catalyst to control the particle size, particle size distribution, and morphology of the resultant polyolefin are quite important. In the other words, success in these developments requires an appropriate integration of catalyst selections with reactor type and process parameters [3-5].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.