Abstract

To answer the question on how the explicit mechanism of coupling in the antiferromagnetic alloy NiCoO is established when in close contact to a ferromagnetic Co layer, X-ray magnetic circular dichroism (XMCD) measurements have been performed. Precise XMCD spectra at the L 2 , 3 -edge of Ni as well as Co have been obtained at room temperature and at 80 K by measuring total electron yield X-ray absorption spectra. The Ni XMCD clearly shows the existence of free, rotatable magnetic Ni moments in the antiferromagnet. As for the Co, XMCD at room temperature shows an average magnetic moment comparable to bulk values. Cooling the sample to 80 K decreases the average Co moment by 10 % . This decrease is explained by a reduction of ferromagnetic cobalt moments related to antiferromagnetic coupling or pinning close to the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.