Abstract
The Mus terricolor complex displays a stable homozygous arrangement of autosomal heterochromatin variations in the form of accretion of definitive autosomal short arms among three nonoverlapping populations, in concert with an expeditious evolutionary differentiation into three chromosomal species: M. terricolor I, II, and III. In contrast to the highly conservative M. musculus-like chromosomes in the coexisting sibling species, M. booduga, reshuffling and differentiation of centric heterochromatin has occurred in harmony with a revision of centric configurations, resulting in acrocentric and submetacentric autosomes. The chromosomal distribution of the prevalent vertebrate telomeric sequence (TTAGGG)<sub>n</sub> was examined by fluorescence in situ hybridization to metaphase cells of M. terricolor I, II, and III. An unusual centric organization of internal telomeric sequences was detected in all the submetacentric and acrocentric autosomes. An auxiliary role of these presumably fragile, recombinogenic telomeric sequences in the evolutionary revision of centric configurations in the terricolor complex is hypothesized.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have