Abstract

In this work, the band structure of CsCdxPb1-xBr3 alloys is investigated through first-principles calculations. An unusual upward band gap bowing is revealed, which is consistent with the experimental observations of the blue-shifted gap in Cd doped CsPbBr3. The gap bowing is found to be mainly contributed to by the conduction band minimum. Based on symmetry analysis, it is demonstrated that, at the Pb-rich or Cd-rich regime, the hybridization between the Pb(6p)-driven and Cd(5s)-driven conduction bands is strongly suppressed due to their different symmetries. Such a chemical mismatch leads to an almost independent evolution of the Pb(6p) and Cd(5s) bands. Then, a model of band shrinking and broadening is proposed to explain upward gap bowing. The results highlight the critical role of symmetry in determining the electronic properties of alloys consisting of materials with distinct band edge characters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.