Abstract
We consider a population distributed between two habitats, in each of which it experiences a growth rate that switches periodically between two values, 1−ɛ>0 or −(1+ɛ)<0. We study the specific case where the growth rate is positive in one habitat and negative in the other one for the first half of the period, and conversely for the second half of the period, that we refer as the (±1) model. In the absence of migration, the population goes to 0 exponentially fast in each environment. In this paper, we show that, when the period is sufficiently large, a small dispersal between the two patches is able to produce a very high positive exponential growth rate for the whole population, a phenomena called inflation. We prove in particular that the threshold of the dispersal rate at which the inflation appears is exponentially small with the period. We show that inflation is robust to random perturbation, by considering a model where the values of the growth rate in each patch are switched at random times: we prove that inflation occurs for low switching rate and small dispersal. We also consider another stochastic model, where after each period of time T, the values of the growth rates in each patch is chosen randomly, independently from the other patch and from the past. Finally, we provide some extensions to more complicated models, especially epidemiological and density dependent models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.