Abstract
The generative adversarial neural network has shown a novel result in the image generation area. However, applying it to a semantic segmentation inpainting task exhibits instability due to the different data distribution. To solve this problem, we propose an unsupervised semantic segmentation inpainting method using an adversarial deep neural network with a newly introduced preprocessing method and loss function. For stabilizing the adversarial training for semantic segmentation inpainting, we match the probability distribution of the segmentation maps with the developed preprocessing method. In addition, a new cross-entropy total variation loss for the probability map is introduced to improve the segmentation inpainting work by smoothing the segmentation map. The experimental results demonstrate the proposed algorithm’s effectiveness on both synthetic and real datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.