Abstract
In this paper, a new unsupervised approach is proposed for the segmentation of Multiple Sclerosis (MS) lesions in multimodality Magnetic Resonance (MR) images. The proposed segmentation scheme is based on joint histogram modelling followed by false positive reduction and alpha matting, which is used to deal with the tissue density overlap problem and partial volume effects in MR images. Firstly, the joint histogram is generated by using fluid-attenuated inversion recovery (Flair), T1-weighted (T1-w) and T2-weighted (T2-w) MRI. Then the region for MS lesions in the joint histogram are located. Sub-sequently, the located region is projected back into the 2D MR images with potential MS lesions. Secondly, priori information is utilized to remove false positive volume of interests. Finally, the partial volume effect is modelled by using an alpha technique provides region level lesion refinement. Validation is performed on real multi-channel T1-w, T2-w, and Flair MR volumes. The experimental results show the proposed method can obtain better results than some state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.