Abstract

This paper presents a novel methodology based on joint histograms, for the automated and unsupervised segmentation of multiple sclerosis (MS) lesion in cranial magnetic resonance (MR) imaging. Our workflow is composed of three steps: locate the MS lesion region in the joint histogram, segment MS lesions, and false positive reduction. The advantage of our approach is that it can segment small lesions, does not require prior skull segmentation, and is robust with regard to noisy and inhomogeneous data. Validation on the BrainWeb simulator and real data demonstrates that our method has an accuracy comparable with other MS lesion segmentation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.