Abstract
AbstractNew music genres emerge constantly resulting from the influence of existing genres and other factors. In this paper we propose a data-driven approach which is able to cluster and classify music samples according to their type/category. The clustering method uses no previous knowledge on the genre of the individual samples or on the number of genres present in the dataset. This way, music tagging is not imposed by the users’ subjective knowledge about music genres, which may also be outdated. This method follows a model-based approach to group music samples into different clusters only based on their audio features, achieving a perfect clustering accuracy (100%) when tested with 4 music genres. Once the clusters are learned, the classification method can categorize new music samples according to the previously learned created groups. By using Mahalanobis distance, this method is not restricted to spherical clusters, achieving promising classification rates: 82%.KeywordsAutomatic music genre classificationaudio indexingunsupervised classification
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.