Abstract
Music Genre Classification (MGC) is a crucial undertaking that categorizes Music Genre (MG) based on auditory information. MGC is commonly employed in the retrieval of music information. The three main stages of the proposed system are data readiness, feature mining, and categorization. To categorize MG, a new neural network was deployed. The proposed system uses features from spectrographs derived from short clips of songs as inputs to a projected scheme building to categorize songs into an appropriate MG. Extensive experiment on the GTZAN dataset, Indian Music Genre(IMG) dataset, Hindustan Music Rhythm (HMR) and Tabala Dataset show that the proposed strategy is more effective than existing methods. Indian rhythms were used to test the proposed system design. The proposed system design was compared with other existing algorithms based on time and space complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.