Abstract

Aluminium (Al) alloys are critical to many applications. Although Al alloys have been commercially widespread for over a century, their development has predominantly taken a trial-and-error approach. Furthermore, many discrete studies regarding Al alloys, often application specific, have precluded a broader consolidation of Al alloy classification. Iterative label spreading (ILS), an unsupervised machine learning approach, was used to identify the different classes of Al alloys, drawing from a specifically curated dataset of 1154 Al alloys (including alloy composition and processing conditions). Using ILS, eight classes of Al alloys were identified based on a comprehensive feature set under two descriptors. Further, a decision tree classifier was used to validate the separation of classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.